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Multiscale simulations of nanotube-based nanoelectromechanical systems �NEMS� controlled by a nonuni-
form electric field are performed by an example of a gigahertz oscillator. Using molecular dynamics simula-
tions, we obtain the friction coefficients and characteristics of the thermal noise associated with the relative
motion of the nanotube walls. These results are used in a phenomenological one-dimensional oscillator model.
The analysis based both on this model and the Fokker-Planck equation for the oscillation energy distribution
function shows how thermodynamic fluctuations restrict the possibility of controlling NEMS operation for
systems of small sizes. The parameters of the force for which control of the oscillator operation is possible are
determined.
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I. INTRODUCTION

The ability of the free relative sliding and rotation of car-
bon nanotube walls1–3 and their excellent “wearproof”
characteristics3 allow the use of carbon nanotube walls as
movable elements in nanoelectromechanical systems
�NEMS�. A number of devices offering great promise for
applications in NEMS and based on the use of the relative
motion of carbon nanotube walls have been proposed re-
cently. These devices include rotational4,5 and plain2 nano-
bearings, nanogears,6 electromechanical nanoswitchs,7

nanoactuators,8,9 Brownian motors,10 nanobolt-nanonut
pairs,11–13 and gigahertz oscillators.14,15 Furthermore, nano-
motors based on the relative rotation of carbon nanotube
walls16–19 and memory cells based on the relative sliding of
carbon nanotube walls20 have been implemented.

The crucial issue in nanotechnology is the actuation of the
NEMS components in a controllable way. A new method for
controlling the motion of NEMS based on carbon
nanotubes21 was proposed lately. Namely, the wall of a nano-
tube has an electric dipole moment if electron donors or/and
acceptors are adsorbed at the ends of the wall. The motion of
such a functionalized wall with an electric dipole moment
can be controlled by a nonuniform electric field. Here, mo-
lecular dynamics �MD� simulations are performed to demon-
strate the feasibility of this control method.

As compared to microelectromechanical systems, the
principal feature of NEMS related to a small number of at-
oms in the system is the significance of thermodynamic fluc-
tuations in NEMS. Here, we perform multiscale simulations
to study the influence of these fluctuations on the NEMS
operation by the example of a nanotube-based gigahertz os-
cillator. We believe that the approach developed and the re-

sults of this study can be also useful for other types of
NEMS, such as artificial molecular rotors22 and so on.

The gigahertz oscillator based on a double-walled carbon
nanotube is one of the simplest nanotube-based NEMS.
Thus, it is commonly used as a model system for studying
the tribological behavior of the nanotube-based NEMS
�Refs. 23–37� and possible methods for controlling their
operation.38,39 The scheme, operational principles, and theory
of the gigahertz oscillator based on the relative sliding of
carbon nanotube walls were considered by Zheng et al.14,15

The oscillator was proposed to be used as a part of the device
for surface profiling.40 Upon the telescopic extension of the
inner wall outside the outer wall, the van der Waals force FW
turns the inner wall back into the outer wall, thereby makes
this NEMS oscillate. However, such oscillations are anhar-
monic and dissipative with the Q-factor Q�10–1000 �Refs.
24, 26–28, and 32� �Q-factor of the system is the ratio of the
total oscillation energy to the energy loss per one oscillation
period�. The frequency of the damping oscillations increases
with decreasing the oscillation amplitude.14 Thus, this fre-
quency increases with time.27,30 Consequently, to provide the
stationary operation of the gigahertz oscillator, that is, to
keep its frequency constant, it is necessary to compensate the
energy dissipation by the work of an external force. To ob-
tain the critical value of this force �i.e., the minimum value at
which the work of the external force can compensate the
energy dissipation�, the energy balance in the controlled op-
eration of the gigahertz oscillator was analyzed.21 It was
shown that the critical amplitude F0c of the harmonic control
force F�t�=F0 cos�2�t /Ts� applied to the movable inner wall
attains a minimum value for the oscillator with walls of
equal lengths and is given by the expression
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F0c =
�2FW

32Q
, �1�

where Q is the Q-factor corresponding to the oscillation with
period Ts.

Here we study the characteristics of the actuation of a
functionalized nanotube wall by a nonuniform electric field
through multiscale simulations of the controlled operation of
the �5,5�@�10,10� nanotube-based gigahertz oscillator. MD
simulations are performed to demonstrate the feasibility of
this control method. To estimate the critical amplitude of the
control force, we calculate the Q-factor of the gigahertz os-
cillator using MD simulations of the damping oscillations.
However, the MD technique does not allow studying systems
containing a large number of atoms within a long simulation
time. So, the operation of the gigahertz oscillator is analyzed
within the framework of a phenomenological one-
dimensional model with the parameters derived from MD
simulations. This analysis is used to investigate the system
behavior in the course of its relaxation to the stationary op-
eration and to determine the conditions under which the sta-
tionary operation of this NEMS is possible.

By now, thermodynamic fluctuations in NEMS were con-
sidered and investigated using MD simulations only to dem-
onstrate the possibility of the relative diffusion of the NEMS
components41 and regarding the equilibrium rotational42 and
translational37 dynamics of walls in carbon nanotubes. As for
the nanotube-based NEMS, such diffusion can be used in
Brownian motors.10 However, diffusion43 or displacement9

of the NEMS components due to thermodynamic fluctuations
can disturb the NEMS operation.9,43 For example, it was
shown that thermodynamic fluctuations restrict the minimum
sizes of the electromechanical nanothermometer based on the
interaction of nanotube walls43 and the electromechanical
nanorelay based on the relative motion of nanotube walls.9

The MD simulations performed here revealed substantial
fluctuations in the nanotube-based gigahertz oscillator. The
analysis of the motion equation of this NEMS indicates the
critical influence of these fluctuations on the possibility of
controlling its operation. In this way, the principal restric-
tions imposed by thermodynamic fluctuations on the possi-
bility of controlling the NEMS operation are studied within
the framework of the phenomenological one-dimensional
model and analyzed on the basis of the Fokker-Planck equa-
tion for the oscillation energy distribution function.

The paper is organized in the following way. The results
of the MD simulations of the operation of the gigahertz os-
cillator are given in Sec. II. In Sec. III, we examine the
influence of the characteristics of the control force on the
operation of the gigahertz oscillator within the framework of
the phenomenological model with the parameters derived
from the MD simulations. The effect of thermodynamic fluc-
tuations on the NEMS operation is analyzed in Sec. IV. Our
conclusions are summarized in Sec. V.

II. MOLECULAR DYNAMICS SIMULATION
OF GIGAHERTZ OSCILLATOR

To obtain the oscillator Q-factor, study the characteristics
of the thermal noise, and demonstrate the possibility of con-

trolling the motion of a functionalized nanotube wall by a
nonuniform electric field, we performed MD simulations of
the free and controlled operation of the �5,5�@�10,10�
nanotube-based oscillator �see Fig. 1�. For this double-walled
nanotube, there is no resonance between the telescopic oscil-
lation and other nanotube vibrations, and the populations of
the vibrational levels are in thermal equilibrium.24 Both
nanotube walls were taken equal to 3.1 nm in length. One
end of the inner wall was capped and the other end was open
and terminated with hydrogen atoms �see Fig. 1�. Both ends
of the outer wall were open and not functionalized. The
charge distribution in the inner wall was calculated by the
semiempirical method of molecular orbitals with the PM3
parameterization of the Hamiltonian.44 The adequacy of the
PM3 parameterization in the case under consideration was
demonstrated by calculations of bond lengths in the C60
fullerene with the symmetry Ih: the calculated bond lengths
agree with their experimental counterparts within 10−4 nm.45

The analysis of the free and controlled behavior of the
gigahertz oscillator was performed using empirical inter-
atomic potentials. Interaction between the inner and outer
wall atoms i and j at distance rij was described by the
Lennard-Jones 12–6 potential

VLJ�rij� = 4��� �

rij
�12

− � �

rij
�6� �2�

with the parameters �CC=3.73 meV, �CC=3.40 Å and �CH
=0.65 meV, �CH=2.59 Å for the carbon-carbon and
carbon-hydrogen interactions, respectively, taken from the
AMBER database46 for aromatic carbon and hydrogen bonded
to aromatic carbon. The parameters provide a consistent de-
scription of the pairwise carbon-carbon and carbon-hydrogen
interactions. The cut-off distance of the Lennard-Jones po-
tential was taken equal to 12 Å. The covalent carbon-carbon
and carbon-hydrogen interactions inside the walls were de-
scribed by the empirical Brenner potential,47 which was
shown to correctly reproduce the vibrational spectra of car-
bon nanotubes.48 So the Hamiltonian of the oscillator based
on a double-walled nanotube was given by

H = K�out� + K�in� + VB
�out� + VB

�in� + 	
i,j

VLJ�rij� , �3�

where K�out� and K�in� are the total kinetic energies of the
inner and outer walls, respectively, VB

�out� and VB
�in� are the

total Brenner potentials of the walls, and the last term is the
sum over all pairs of atoms i of the inner wall and atoms j of
the outer wall.

x

FIG. 1. Gigahertz oscillator based on the �5,5�@�10,10� double-
walled nanotube. Hydrogen atoms are shown in light gray.

ERSHOVA et al. PHYSICAL REVIEW B 81, 155453 �2010�

155453-2



The value of the total van der Waals force,24 which re-
tracts the telescopically extended inner wall back into the
outer wall, was found to be FW=1180 pN for the above
parameters of the Lennard-Jones potential. For large-
diameter nanotubes, the interwall van der Waals energy
should be proportional to the overlap area between the walls.
Therefore, the total van der Waals force is proportional to the
nanotube diameter. The van der Waals force per unit nano-
tube diameter was found to be about 0.1–0.2 N/m in the
experiments of Cumings and Zettl,2 and Kis et al.3 We ob-
tained the value of the van der Waals force per unit nanotube
diameter of about 0.3 N/m. However, one should take into
account that the measurements2,3 were performed for large-
diameter multiwalled nanotubes, whereas a nonlinear depen-
dence of the van der Waals force on the nanotube diameter
should be expected for small-diameter nanotubes. The barrier
to relative sliding of the walls was calculated to be 0.008
meV per atom of the outer wall, in agreement with the recent
result obtained for the �5,5�@�10,10� nanotube through
local-density-approximation calculations.49 The Lennard-
Jones potential was also shown to provide the interlayer in-
teraction energy in graphite of about 62 meV/atom, which is
consistent with the experimental value 52�5 meV /atom
obtained recently from the experiments on the thermal de-
sorption of polyaromatic hydrocarbons from a graphitic
surface50 but greater than the values reported earlier �see Ref.
51 and references therein�.

An in-house MD-KMC code52 was implemented. The code
used the velocity Verlet algorithm and neighbor lists to im-
prove the computing performance. The time step was 0.2 fs,
which is about two orders of magnitude shorter than the
period of thermal vibrations of hydrogen atoms. The initial
configuration of the nanotube was optimized at zero tem-
perature. The initial velocities of the atoms were distributed
according to the Maxwell-Boltzmann distribution with a
doubled preheating temperature 2T0. This provided that dur-
ing the MD simulation, the initial distribution of velocities
reached the Maxwell-Boltzmann temperature corresponding
to the preheating temperature T0 in less than 0.02 ps. To start
the oscillation, the inner wall was pulled out along the nano-
tube axis at the distance s=1 nm �about 30% of its length�
and released with the zero center-of-mass velocity. The outer
wall was fixed at three atoms. The relative fluctuations of the
total energy of the system caused by numerical errors were
less than 0.3% of the interwall van der Waals energy.

To get the temperature dependence of the oscillator
Q-factor, we performed microcanonical MD simulations of
free oscillations �see Fig. 2� at preheating temperatures of 0,
50, 100, 150, and 300 K. The oscillation energy E is given by
the sum of the center-of-mass kinetic energy of the movable
wall and the excess of the interwall van der Waals energy
V�x� associated with the displacement x of the movable wall
from the position corresponding to the minimum of the in-
terwall van der Waals energy 
V�0�=0�

E = V�x� +
m�2

2
, �4�

where m is the mass of the movable wall and � is its center-
of-mass velocity. The calculation of the oscillation energy

was performed at the moments when the movable wall
crossed the position x=0 corresponding to the minimum of
the interwall van der Waals energy. So the oscillation energy
was found at these moments as E=m�2 /2. Since the oscilla-
tion energy loss �E over a half period of the oscillation is
much smaller than the oscillation energy E ��E�E�, the
Q-factor was estimated using the ratio �E /E averaged over a
single simulation run

Q = � 2�E

E

−1

. �5�

There are two contributions to the Q-factor calculation
error. On the one hand, the Q-factor depends on the oscilla-
tion amplitude. Thus, the damping of the oscillation leads to
a change in the Q-factor. This effect becomes relevant at a
long simulation time. On the other hand, there is also a sto-
chastic contribution to the Q-factor calculation error related
to thermodynamic fluctuations, which is high at a short simu-
lation time and decreases with its increase. We took a simu-
lation time of 500 ps, which minimizes the Q-factor calcula-
tion error in a single run and provides the accuracy of the
Q-factor calculations within 20%.

Temperature T of the system was monitored based on the
total thermal kinetic energy of the atoms in the system

3

2
kBTN = �K�out� + K�in� −

m�2

2



�t
, �6�

where kB is Boltzmann’s constant and N is the number of
atoms in the system. The total thermal kinetic energy was
averaged over a time interval �t=1 ps, as this time interval
must be much longer than the period of thermal vibrations
�about 0.1 ps� and, on the other hand, much shorter than the
period of the telescopic oscillation �about 10 ps�. The tem-
perature change over the simulation time was less than 9% at
preheating temperatures of 50, 100, 150, and 300 K. At a
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FIG. 2. Calculated displacement of the free oscillating movable
wall x �in nm� as a function of time t �in ps� at preheating tempera-
tures of �a� 50 and �b� 300 K.
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preheating temperature of 0 K, temperature increased to 2 K
within the simulation time. An estimation24 showed that the
influence of quantum effects on the dissipation rate can be
neglected at temperatures above 10 K. The calculated
Q-factor Q at different preheating temperatures is given in
Table I.

To estimate the level of fluctuations in the system, we also
calculated the root-mean-square deviation of the relative en-
ergy change �E /E over every half period of the oscillation.
Significant fluctuations of the quantity �E /E were revealed
�see Fig. 3�. The calculated relative root-mean-square devia-
tion 	E of �E /E at different temperatures is given in Table I.

It was found that the Q-factor of the oscillator Q strongly
increases with decreasing temperature �see Table I�, in agree-
ment with the other papers.24,34–37 Nevertheless, the Q-factor
does not go to infinity at the zero preheating temperature.
The relative deviation 	E of �E /E weakly depends on tem-
perature in the temperature range of 50–300 K. However, the
considerable increase in 	E is observed for the zero preheat-
ing temperature. Explanations of these results are presented
below.

The investigation of the tribological properties of the
�5,5�@�10,10� nanotube-based oscillator24 has revealed that
the populations of the nanotube vibrational levels are in ther-
mal equilibrium, which justifies the applicability of the
fluctuation-dissipation theorem53,54 for this system. As the
dissipation rate is proportional to the number of excited
phonons, it was shown that the inverse Q-factor should lin-
early depend on temperature,24 in agreement with Table I.
Since a certain energy exchange between the telescopic os-
cillation of the movable wall and the other degrees of free-
dom exists at the zero temperature even in the classical limit,
the Q-factor remains finite at the zero preheating tempera-
ture.

According to the analysis24 performed within the frame-
work of the fluctuation-dissipation theorem,53,54 the relative
deviation 	E of the relative energy change �E /E over a half-
period of the oscillation is determined by the expression

	E � 2.5�kBTQ

E
. �7�

As the Q-factor of the considered gigahertz oscillator is al-
most inversely proportional to temperature �see Table I and

also Ref. 24�, it follows from Eq. �7� that 	E weakly depends
on temperature. However, this result is valid unless the ap-
plicability conditions of the fluctuation-dissipation theorem
are not violated. One of these applicability conditions is that
all degrees of freedom except for one should be in thermal
equilibrium. We suppose that, at very low temperatures, the
system is highly nonequilibrium. This results in the deviation
from Eq. �7� and the great value of 	E for the zero preheating
temperature �see Table I�. Note that, according to Eq. �7�, the
significant fluctuations of the relative energy change �E /E
over a half period of the oscillation should be attributed to
the small oscillation energy, i.e., the small size of the system
under consideration or the small amplitude.

In the simulations of the controlled oscillations, the
hydrogen-functionalized inner wall was exposed to the har-
monic electric field of a spherical capacitor. In this case, one
more term was added to the Hamiltonian �3� of the system

Vex = 	
i

qi
�r�i� , �8�

where qi is the charge of the atom i of the movable wall and

�r�i� is electric field potential at the position of the atom i
with the radius vector r�i from the center of the spherical
capacitor

0 100 200 300 400
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-0.0025

0.0000

0.0025
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0.0075

∆E/E

t

FIG. 3. Calculated relative loss �E /E of the oscillation energy
over a half-period of the oscillation as a function of time t �in ps� at
a temperature of 300 K. The average value and the root-mean-
square deviation are shown with the solid and dotted lines,
respectively.

TABLE I. Calculated Q-factor Q, relative deviation 	E of the relative energy change �E /E over the
oscillation half-period, and critical amplitudes of the control force F0c and voltage* U0c at different preheat-
ing temperatures T0. �*Voltage is calculated for a spherical capacitor with plate radii of 100 and 110 nm.�

T0

�K� Q 	E

Long nanotube case Short nanotube case

F0c

�pN�
U0c

�V�
F0c

�pN�
U0c

�V�

0 700�350 4.4 0.52 6.0 0.40 4.7

50 250�50 1.2 1.4 17 1.1 13

100 160�30 1.4 2.3 26 1.8 20

150 140�30 1.5 2.7 31 2.1 24

300 55�11 1.5 6.6 77 5.2 60
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�r�i� = −
R1R2

R2 − R1

1

�r�i�
U0 cos��t + �� . �9�

Here U0 is the amplitude of the applied voltage, � is the
angular frequency of the electric field, � is the initial phase
shift between the electric field and the velocity of the mov-
able wall, R1 and R2 are the radii of the inner and outer plates
of the capacitor, respectively. The angular frequency of the
electric field equaled the oscillation angular frequency �0
corresponding to the initial oscillation amplitude s=1 nm
��=�0�. The initial phase shift between the electric field and
the inner wall velocity equaled zero ��=0�. The radii of the
plates of the spherical capacitor were taken equal to R1
=100 nm and R2=110 nm.

Furthermore, in these simulations, the temperature of the
outer wall was maintained by periodically rescaling atomic
velocities every 0.1 ps �the Berendsen thermostat55�. Though
only the outer wall was kept in contact with the thermostat,
our estimation demonstrates that the temperatures of both
walls are almost equal. In fact, the dissipation rate at a tem-
perature of 300 K was found to be W�10−9 W. The thermal
conductivity between the nanotube walls can be assumed
equal to that between graphite layers56 
��5 W / �m K�.
Under stationary conditions, the dissipation rate should be
equal the rate of heat transfer between the walls. Supposing
that the heat flux is identical through all coaxial cylindrical
surfaces between the inner and outer walls, one gets the tem-
perature difference between the nanotube walls

�T =
W

2�L
�

ln�1 +
	R

Rin
� � 10−2 K. �10�

Here, L=3.1 nm is the wall length, 	R=0.34 nm is the in-
terwall distance, Rin=0.34 nm is the inner wall radius. As it
is seen, the temperature difference between the walls is neg-
ligible.

The results of the MD simulations of the controlled oscil-
lations are presented in Fig. 4. The amplitude of the applied
voltage was 60.5 and 61.4 V at a temperature of 300 K and
10.9 V at 50 K. The oscillations shown in Fig. 4 correspond
to the control force amplitude greater than the critical value
for the considered oscillator. In this case, the variation in the
oscillation amplitude is observed, in agreement with the re-
sults obtained below using the phenomenological one-
dimensional model.

Recently, a nanomotor based on the relative rotation of
nanotube walls in a multiwalled carbon nanotube was
implemented.17 In this experiment, the voltage applied be-
tween the nanotube wall and the control electrode reached
100 V. This value is of the order of the voltage amplitude
needed to sustain the oscillation at a constant amplitude in
the performed MD simulations. Thus, the MD simulations
have demonstrated that the method under consideration can
be used to control the motion of the nanotube-based NEMS.

The amplitude of the applied voltage needed to sustain the
oscillation at a constant amplitude can be decreased if the
dipole moment of the inner wall is increased. This can be
achieved, for example, through the adsorption of hydrogen
and fluorine atoms at opposite open ends of the nanotube.21

Moreover, as it was shown above, the Q-factor is inversely

proportional to temperature. Therefore, oscillator operation
at low temperatures requires a smaller amplitude of the con-
trol force. For instance, at the temperature of liquid helium
�4.2 K�, the necessary amplitude of the applied voltage is
only several volts.

It should also be mentioned that, in some cases, even at
relatively high amplitudes of the control force, the break-
down of the oscillation occurs 
see Fig. 4�c��. The analysis
below shows that this breakdown is induced by thermody-
namic fluctuations. In fact, let us suppose that occasionally a
significant negative fluctuation of the oscillation energy oc-
curs. This means that the oscillation amplitude decreases.
Since the oscillator frequency strongly depends on the oscil-
lation amplitude,14,15 the oscillator gets out of the resonance
with the control force. This leads to a decrease in the work of
the control force, which, in turn, results in a further decrease
in the oscillation energy. As follows from this explanation,
the stability of the oscillator operation might be improved
with increasing the amplitude of the control force �above the
critical value� or with decreasing the level of fluctuations in
the system. It is seen that the breakdown of the oscillation
induced by thermodynamic fluctuations should be expected
for any strongly anharmonic oscillator.

0 200 400 600 800 1000
-1.5

-1.0

-0.5

0.0

0.5

1.0
x

t

(a)

0 200 400 600 800 1000
-1.5

-1.0

-0.5

0.0

0.5

1.0
x

t

(b)

0 200 400 600
-1.5

-1.0

-0.5

0.0

0.5

1.0
x

t

(c)

FIG. 4. Calculated displacement of the movable wall x �in nm�
for the controlled oscillations as a function of time t �in ps� at
temperatures of �a� 50 and 
�b� and �c�� 300 K. The voltage ampli-
tude is �a� 10.9 V; �b� 60.5 V; and �c� 61.4 V.
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III. PHENOMENOLOGICAL MODEL OF GIGAHERTZ
OSCILLATOR

MD simulations allow the study of system behavior only
at times of a few nanoseconds. To reach longer simulation
times, a phenomenological model with the parameters de-
rived from MD simulations is proposed. If there is no reso-
nance between the telescopic oscillation and other vibrations
in the nanotube 
which is the case for the considered
�5,5�@�10,10� nanotube24�, the oscillator dynamics may be
roughly described by a one-dimensional equation of motion

mẍ�t� = FvdW
x�t�� + Ffr
ẋ�t�� + ��t� + F�t� . �11�

Here, x is the displacement of the movable wall; m is its
mass; FvdW�x� is the interwall van der Waals force; Ffr�ẋ� is
the friction force modeling energy dissipation; ��t� is the
white noise representing random fluctuating forces; and F�t�
is the control force. The initial conditions were x�0�=s
=1 nm, ẋ�0�=0.

As above, we considered the harmonic control force
F�t�=F0 cos��t+��, where F0 is control force amplitude, �
is the angular frequency of the control force, and � is the
initial phase shift between the control force and the velocity
of the movable wall. At a relatively low oscillation energy,
the dynamic friction force is proportional to the oscillator
velocity36,37 with the friction coefficient �, Ffr
ẋ�t��=−�ẋ�t�.
The friction coefficient � was chosen so as to reproduce the
Q-factor of the oscillator at the initial oscillation amplitude
s=1 nm �see Table I�. Since the phenomenological model
was used here to study the qualitative behavior of the system,
the dependence of the friction coefficient � on the oscillation
amplitude was disregarded, i.e., the friction coefficient � was
supposed to be constant. To determine the conditions of the
stationary operation and study the relaxation of the oscillator
to the stationary operation, the thermal noise was neglected

��t��0�.

Two approximations for the interwall van der Waals force
FvdW�x� were considered. The first one was the calculated
dependence of the interwall force on the displacement be-
tween the walls for the �5,5�@�10,10� nanotube 3.1 nm in
length, which was used in our MD simulations �see Fig. 5�.
To calculate this dependence, the walls were separately re-
laxed and the inner wall was then rigidly shifted along the
wall common axis. The interwall force was found as the
partial derivative of the total interwall van der Waals energy

with respect to the inner wall displacement. Since the nano-
tube under consideration is rather short, the region in which
the interwall van der Waals force increases from zero to the
nearly constant value FW�1180 pN �x�0.5 nm� is compa-
rable to the oscillation amplitude �see Fig. 5�. Thus, Eq. �11�
with this approximation of the interwall van der Waals force
represents a “short nanotube” case of the proposed model.
Equation �11� was solved numerically with a time step of 1 fs
and the friction coefficient � for the given temperature was
fitted so that the model reproduced the values of the Q-factor
obtained in the MD simulations.

For a long nanotube, one can neglect the short region x
�0.5 nm in the dependence of the interwall force on the
displacement between the walls, where the force increases
from zero to the nearly constant value. Thus, the interwall
van der Waals force FvdW�x� can be assumed constant14,15

FvdW�x� = − FWsign�x� . �12�

The magnitude of the interwall force FW was taken equal to
that in the short nanotube case FW=1180 pN �see Fig. 5�.
Approximation �12� of the interwall van der Waals force pro-
vides the following expression for the friction coefficient:

� =
3

8Q
�FWm

2s
=

3m

2QTs
, �13�

where

Ts = 4�2ms

FW
�14�

is oscillation period corresponding to amplitude s.
In this “long nanotube” case, motion equation �11� can be

solved semianalytically with the time step equal to the oscil-
lation half-period. This leads to the decrease in the calcula-
tion time by a factor of 10–100 compared to that in the short
nanotube case.

In the long nanotube case, the critical amplitude of the
control force is determined by Eq. �1�. In the short nanotube
case, the interwall van der Waals force is not constant and
has a smaller average value. So, in the latter case the critical
amplitude of the control force is less than the value given by
Eq. �1�. The calculated critical amplitudes of the control
force and voltage for the short nanotube case are presented in
Table I. The critical voltage amplitudes agree with the results
of the MD simulations 
see Figs. 4�a� and 4�b�� for the same
nanotube within the accuracy of the Q-factor calculations.

Let us consider the conditions of switching the control
force for the free oscillation with an amplitude s=1 nm. The
possibility of the stationary operation mode for the given
F0 /F0c ratio is determined by the initial phase shift � be-
tween the control force and relative velocity of the walls and
the angular frequency � of the control force. We examined
the ranges of normalized parameters of the control force
F0 /F0c, � /�0 �where �0 is the angular frequency corre-
sponding to the oscillation with the amplitude s=1 nm� and

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

FvdW

x

FIG. 5. Calculated interwall van der Waals force FvdW �in nN� of
the �5,5�@�10,10� nanotube 3.1 nm in length as a function of the
displacement of the movable wall �in nm�.
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� /� where the stationary mode is possible for both cases of
the proposed model. As it can be seen in Figs. 6 and 7, on
increasing the amplitude of the control force F0 or decreas-
ing the Q-factor, the ranges of � and � which correspond to
the stationary operation mode become wider. At the high
amplitude of the control force F0=10–100F0c, switching of
the control force is reasonable almost at an arbitrary moment
�see Figs. 6 and 7�.

In both short nanotube and long nanotube cases of the
model we obtained similar results �see Fig. 6�. So, it was
demonstrated that the choice of the potential for the model
has negligible influence on the behavior of the considered
oscillator and the simpler long nanotube case �disregarding
the shape of the dependence of the interwall van der Waals

energy on the displacement of the movable wall� can be used
for qualitative studies of the oscillator operation for nano-
tubes longer than 3 nm and oscillation amplitudes above 1
nm. This statement is also confirmed by the results obtained
in Sec. IV with account of the thermodynamic fluctuations.

The relaxation to the stationary operation mode was stud-
ied for �=0 and �=�0. If the amplitude of the control force
exceeds the critical value, the stationary operation mode is
attained in 10–100 ns. During the relaxation to the stationary
operation mode, the amplitude and frequency of the NEMS
oscillate and tend to their stationary values. The frequency of
the gigahertz oscillator approaches the frequency of the con-
trol force. The time dependence of the frequency of the gi-
gahertz oscillator can be approximated by

(e) (f)

(c) (d)

(a) (b)

FIG. 6. Calculated parameters of the control force F0 /F0c, � /�0, and � �shown in black� for which the stationary operation mode is
possible at Q=500. 
�a�, �c�, and �e�� Short nanotube case and 
�b�, �d�, and �f�� long nanotube case of the phenomenological model. 
�a� and
�b�� �=0; 
�c� and �d�� � /�0=1; and 
�e� and �f�� F0 /F0c=2.
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��t� =
�

2�
+

	�

2�
exp�−

t

�rel
�sin�2�t

Tosc
+ 
�� , �15�

where �rel is the characteristic time required to reach the
stationary operation mode, 	� is the parameter characteriz-
ing the magnitude of the frequency oscillations, Tosc is the
period of the frequency and amplitude oscillations, and 
� is
the fitting parameter. A similar time dependence can be writ-
ten for the amplitude of the gigahertz oscillator. Note that the
variation in the oscillation amplitude revealed by the phe-
nomenological model conforms to the results obtained in the
MD simulations 
see Figs. 4�a� and 4�b��.

The time parameters characterizing relaxation to the sta-
tionary operation mode as functions of the Q-factor and the
amplitude of the control force are shown in Figs. 8 and 9.

Note that the period of the frequency and amplitude oscilla-
tions exceeds the oscillation period of the gigahertz oscillator
by several orders of magnitude. As it is seen in Fig. 8, an
increase in the Q-factor leads to an increase in the character-
istic time �rel�Q1.00�0.01 and the period Tosc�Q0.50�0.01, and
also in a decrease in the magnitude of the frequency oscilla-
tions 	��Q−0.50�0.01. Near the critical value of the control
force amplitude F0=F0c 
see Eq. �1��, the parameter 	� char-
acterizing the magnitude of the frequency oscillations and
the period Tosc of the frequency and amplitude oscillations as
functions of �F=F0−F0c are described by “universal” de-
pendences: 	���F0.75�0.01 and Tosc��F−0.25�0.03 �see Fig.
9�. In the stationary operation mode, the frequency and am-
plitude of the gigahertz oscillator and also the phase shift
between the control force and relative velocity of the walls
are constant.

The obtained dependences of 	� and Tosc on the Q-factor
and the control force amplitude can be explained in the fol-
lowing way. In the stationary oscillation mode, the phase
shift �0 between the control force and the velocity of the
movable wall is given by cos �0=F0c /F0. So if �F /F0c�1,
�0��2�F /F0c. If the initial phase shift of the control force
equals zero ��=0�, the number of the oscillation periods
needed to reach the phase shift �0 is N=�0� / �2�	��. Dur-

(a)

(b)

(c)

FIG. 7. Calculated parameters of the control force � /�0 and �
�shown in black� for which the stationary operation mode is pos-
sible. The calculations were performed for the long nanotube case
of the phenomenological model. �a� F0 /F0c=10, Q=500; �b�
F0 /F0c=100, Q=500; and �c� F0 /F0c=10, Q=50.

(a)

(b)

(c)

FIG. 8. Calculated �a� characteristic time �rel �in s� required to
reach the stationary operation mode, �b� magnitude of the frequency
oscillations 	� �in s−1�, and �c� period of the frequency oscillations
Tosc �in s� as functions of the Q-factor for F0 /F0c=2, �=�0, and
�=0.
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ing this time, the energy perturbation 	E=2FWs	� /� is
compensated by the excessive work of the control force
N�Fs. So, using Eq. �1� for FW, one gets

	�

�
=

1

16
�2��F

F0c

�0

Q
�

23/4�1/2

16Q1/2 ��F

F0c
�3/4

. �16�

The period of the frequency and amplitude oscillations is
given by

Tosc�

2�
= 4N =

2�0

�

�

	�
� 16

23/4Q1/2

�3/2 ��F

F0c
�−1/4

. �17�

Note that in the case �F /F0c�1, the phase shift of the con-
trol force in the stationary operation mode is �0�� /2, and

	�

�
�

�

16Q1/2��F

F0c
�1/2

,
Tosc�

2�
�

16Q1/2

�
��F

F0c
�−1/2

. �18�

If the initial phase shift of the control force considerably
differs from zero �����, the stationary operation mode is
possible only in the case �F /F0c�1, and the dependences in
Eq. �18� are still valid. Note that estimates in Eqs. �16�–�18�
not only give the same qualitative dependences as presented
in Figs. 8 and 9 but also the numerical factors with an accu-
racy of 10–50 %.

IV. THERMODYNAMIC FLUCTUATIONS
IN GIGAHERTZ OSCILLATOR

As it was shown in Sec. II using the MD simulations,
thermodynamic fluctuations lead to the breakdown of the
stationary oscillation. To examine the effect of fluctuations
with the help of the one-dimensional model, one should in-
troduce noise ��t� into motion equation �11�. For the

�5,5�@�10,10� nanotube-based oscillator, the relative devia-
tion 	E of the relative energy change �E /E over the half-
period of the oscillation calculated through the MD simula-
tions was shown to be in good agreement with the analytical
results obtained on the basis of the fluctuation-dissipation
theorem.24 So, thermal noise at temperature T should be a
Gaussian white noise of zero mean ���t��=0 which satisfies
the fluctuation-dissipation relation53,54 ���t���t−���
=2�kBT	���. Here 	��� is the Dirac delta function. Integrat-
ing motion equation �11�, we changed the value ��t� ran-
domly with the time step ��. Therefore, the dispersion of ��t�
was determined by

��2� =
2�kBT

��

. �19�

Equation �19� can be presented in the obvious form

��2� = 	2 Ts

2��

��Ffr��s
2, �20�

where Ts is the period of the oscillation with the amplitude s,
��Ffr��s=4�s /Ts is the average friction force for the oscilla-
tion with the amplitude s, and 	=�TskBT / �4�s2� is the coef-
ficient characterizing the ratio of the noise to the friction
force. In the long nanotube case, as it follows from expres-
sion �13� for the friction coefficient � and expression �14� for
the oscillation period, 	 is given by the equation

	 =�16

3

kBTQ

E
. �21�

Comparing Eqs. �7� and �21�, one can see that 	 /	E�1. The
point is that 	 is determined by the ratio of the noise to the
friction force averaged over time, while 	E is given by the
ratio of the same quantities averaged over the displacements
of the movable wall. So, 	 and 	E should differ only by a
numerical factor of an order of 1.

If the fluctuation-dissipation relation is not satisfied, one
can suppose that the noise ��t� is white and introduce it ac-
cording to Eq. �20�. However, in this case, the dispersion of
��t� is not related to the Q factor and temperature and can be
extracted, for example, from the values of 	E obtained by
MD simulations.24

In our simulations, we changed the value ��t� randomly
with the time step �� equal to the simulation time step 1 fs in
the numerical calculations for the long nanotube and short
nanotube cases and equal to the oscillation half-period in the
semianalytical calculations for the long nanotube case. The
dispersion of ��t� was assumed to be constant. We character-
ize this dispersion by the value of 	 in Eq. �20� correspond-
ing to the initial oscillation amplitude 1 nm. Note that the
values of 	 were taken of the order of 	E calculated through
the MD simulations �see Table I�. The breakdown of the
stationary mode was defined as the moment when the oscil-
lation amplitude becomes less than 0.4 nm. The lifetime of
the stationary mode �s �i.e., the time to the breakdown of the
controlled oscillation� for given F0 /F0c and 	 was averaged
over 100–400 numerical solutions of Eq. �11�.

In both short nanotube and long nanotube cases, the
model predicts that the fluctuations actually lead to the

(b)

(a)

FIG. 9. �Color online� Calculated �a� magnitude of the fre-
quency oscillations 	� �in s−1� and �b� period of the frequency
oscillations Tosc �in s� as functions of �F0 /F0c= �F0−F0c� /F0c for
�=�0, �=0, ��� Q=50, and ��� Q=500. Solid straight lines show
the approximations of these functions for �F0 /F0c�1.
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breakdown of oscillations, i.e., the average lifetime of the
stationary mode is finite. The calculations with the one-
dimensional model have shown that the lifetime �s increases
with decreasing 	 �see Fig. 10� and approaches infinity at 	
→0. The lifetime of the stationary mode can also be in-
creased with increasing the amplitude of the control force
�see Fig. 10�. More specifically, the lifetime almost exponen-
tially depends on the ratio F0 /F0c and, for 	=1.5, becomes
longer than 1 ms at F0 /F0c�10. The explanation of the de-
pendences obtained is given below. Note that the model pre-
dicts the average lifetime of the stationary mode to be about
1 ns at the amplitude of the control force slightly above the
critical value, in good agreement with the breakdown of the
stationary mode observed in the MD simulations 
see Fig.
4�c��. The curves obtained in the short nanotube and long
nanotube cases of the model are very close to each other,
thus proving once again the applicability of the long nano-
tube case of the model �see Fig. 10�. The semianalytical ap-
proach with the time step �� equal to the oscillation half-
period provides shorter lifetimes compared to the
calculations with the time step ��=1 fs �see Fig. 10�. How-
ever, the qualitative dependences of the lifetime on F0 /F0c

and 	 are identical.
To explain the calculated dependence of the lifetime of

the stationary operation mode of the gigahertz oscillator on
F0 /F0c and 	, we performed the analysis of the oscillation
energy distribution function in the long nanotube case. Our
analysis was based on the following assumptions: �1� the
fluctuation-dissipation relation is satisfied and �2� friction co-
efficient � is constant and independent of the oscillation am-
plitude. However, we believe that the qualitative conclusions
made in the analysis below are valid for wider conditions of
NEMS operation. The oscillation energy distribution func-
tion f�E , t� characterizes the probability for the oscillator to
have oscillation energy E at time instance t. The evolution of
the oscillation energy distribution function in the gigahertz
oscillator is determined by the Fokker-Planck equation

� f

�t
=

�

�E
�D

� f

�E
− uf� . �22�

Let us first consider the free oscillation. The damping �or
drift� of the oscillation energy is determined as

u =
dE

dt
= −

E

QTs
. �23�

Note that the product of the Q-factor and the oscillation pe-
riod QTs is independent of the oscillation amplitude for the
considered phenomenological model with the constant fric-
tion coefficient � 
see Eq. �13��.

Based on the fluctuation-dissipation theorem, it was
shown24 that the thermal noise leads to the diffusion of the
oscillation energy

��	E�2� = 2Dt �24�

with the diffusion coefficient24

D = �
kBTE

QTs
, �25�

where ��1 is a numerical factor found below using the
phenomenological model.

Thus, the Fokker-Planck equation takes the form

� f

�t
=

�

�E
�aE

� f

�E
+ bEf� , �26�

where

a = �
kBT

QTs
, b =

1

QTs
. �27�

To solve Eq. �26�, let us introduce the variables

� = E exp�bt� − E0, 
 = exp�bt� − 1, �28�

where E0 is the initial oscillation energy.
For these variables and F�� ,
�= f�E , t�exp�−bt�, Eq. �26�

is reduced to

�F

�

=

a

b

�

��
��� + E0�

�F

��
� . �29�

In the case ����E0, which means that the width of the
oscillation energy distribution is small compared to the cur-
rent average oscillation energy, one gets a simple one-
dimensional diffusion equation

�F

�

=

aE0

b

�2F

��2 . �30�

From these considerations it can be seen that the solution of
Eq. �26� for the initial condition f�E ,0�=	�E−E0� can be
approximated as

FIG. 10. �Color online� Calculated lifetime �s �in s� of the sta-
tionary operation mode as a function of F0 /F0c for Q=55, �=0,
and �=�0. Dashed lines show the results of the numerical calcula-
tions with ��=1 fs: in the long nanotube case ��� 	=3, ��� 	
=1.5, and ��� 	=1; in the short nanotube case ��� 	=1.5. Solid
lines show the results of the semianalytical calculations for the long
nanotube case with �� equal to the half-period of the oscillation.
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f�E,t� �� b exp�2bt�
4�aE0
exp�bt� − 1�

�exp�−
b

4aE0


E − E0 exp�− bt��2


exp�bt� − 1�
exp�2bt��

�31�

for t�TsQ ln�E0 /kBT�. In the case of the small damping �t
�TsQ�, equation �31� takes the simple form

f�E,t� �
1

�4�aE0t
exp�−


E − E0�1 − bt��2

4aE0t
� . �32�

For the considered phenomenological model with the con-
stant dispersion of the noise ��2�, we used Eq. �19� to express
the diffusion coefficient D and the parameter a in terms of
the parameters of the model

D = �
��2���E

3m
=

3�

16

	2E

Q

E

QTs
, a =

3�

16

	2E

Q2Ts
. �33�

Note that the diffusion coefficient still linearly depends on
the oscillation energy.

We numerically calculated the energy distribution func-
tion for damping oscillations in the long nanotube case with
��=1 fs as a function of time �see Fig. 11�. To fit the energy
distribution function, we estimated numerical factor � to be
�=0.75 in Eqs. �25�, �27�, and �33�. As is seen in Fig. 11,
solution �31� for this value of � is in good agreement with
the results of the numerical calculations.

In the stationary operation mode, the oscillation energy
drift can be determined as the rate of energy relaxation to the
stationary value Es. As it was shown above by the MD simu-
lations and calculations with the phenomenological model, if
the oscillation energy E is given a small perturbation, energy
oscillations occur with the period Tosc�Ts

�Q, which is con-
siderably greater than the oscillation period Ts 
see Fig.
8�c��. Nevertheless, since the period of the energy oscilla-
tions Tosc is much shorter than the characteristic time �rel
required for the reversion to the stationary operation mode,
we believe that one can neglect the energy oscillations and

approximate the drift term in the Fokker-Planck Eq. �22� by
the relaxation rate of the absolute value of the oscillation
energy deviation from the stationary value �E−Es� averaged
over the time Tosc. The time of relaxation �rel to the stationary
operation mode was shown to linearly depend on the
Q-factor �rel�TsQ 
see Fig. 8�a��. Thus, the drift term can be
approximated as

u =
d��E − Es��Tosc

dt
� −

��E − Es��Tosc

QTs
. �34�

So, the Fokker-Planck equation for the energy distribution
function in the stationary operation mode takes the form

� f

�t
=

�

�E
�aE

� f

�E
+ b�E − Es�f� , �35�

Therefore, the distribution function in the stationary op-
eration mode, which is established within the time of about
�rel is given by

f�E� = S exp�− �
Es

E b�E� − Es�
aE�

dE��
= S exp�−

b

a
�E − Es − Es ln� E

Es
��� , �36�

where C is a constant determined by the normalization of
f�E�. For �E−Es��Es, one gets

f�E� = C exp�−
bEs

2a
�E − Es

Es
�2� . �37�

Substituting expressions �27� for a �with �=0.75� and b, one
gets

f�E� = C exp�−
Es

2�kBT
�E − Es

Es
�2� . �38�

It can be seen that the width of the oscillation energy distri-
bution depends on the ratio of the stationary oscillation en-
ergy Es to the thermal kinetic energy kBT and is independent
of the Q-factor.

In terms of the parameters of the considered phenomeno-
logical model with the constant noise dispersion, the oscilla-
tion energy distribution function in the stationary operation
mode is obtained by substituting Eq. �27� for b and Eq. �33�
for a into Eq. �37�

f�E� = C exp�−
8Q

3�	2�E − Es

Es
�2� . �39�

Using the phenomenological model, we numerically cal-
culated the oscillation energy distribution function in the sta-
tionary operation mode �see Fig. 12� averaged over 50 simu-
lations for each set of parameters: Q-factor Q, amplitude of
the control force F0, and the ratio 	 of the noise to the fric-
tion force. It can be seen in Fig. 12 that there is a critical
value of oscillation energy Ec which separates two operation
modes of the gigahertz oscillator: the damping oscillation for
E�Ec and the stationary operation mode where operation
can be controlled at E�Ec. The critical value Ec can be
found as the point where the derivative of the oscillation

0.0 0.5 1.00

1

2

140T0
100T0

60T0 40T0
20T0

10T0

1T0
f

E/E0

FIG. 11. Energy distribution function f�E /E0� for the damping
oscillation at different time instances for Q=55 and 	=1.5. Solid
lines show the results of the numerical calculations in the long
nanotube case with ��=1 fs. Corresponding functions calculated
using Eq. �31� are shown with the dotted lines.
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energy distribution function has a jump. The results of the
numerical calculations are in reasonable agreement with Eq.
�39� for E�Ec �see Fig. 12�. So neglecting the energy oscil-
lations in the estimation of the drift term in the Fokker-
Planck equation is adequate for the qualitative description of
the system behavior.

The probability that E takes some critical value Ec, which
results in the breakdown of the stationary oscillation, is pro-
portional to f�Ec�. Therefore, the lifetime of the stationary
oscillation is determined by

�s � TsQ exp� 8Q

3�	2�Ec − Es

Es
�2� , �40�

where the pre-exponential factor is chosen so as to provide
�s�TsQ for F0 /F0c=1.

The critical value Ec can be estimated from the following
considerations. For the work of the control force to compen-
sate the deviation of the oscillation energy E−Es and thus to
stabilize the oscillation, at least N��E−Es� / 
2�F0−F0c�s�
periods of the oscillation are required. However, within this
time, a phase shift N�0�Ts between the control force and the
oscillation is accumulated, where �Ts=Ts�E−Es� / �2Es� is
the change in the oscillation period due to the fluctuation of
the oscillation amplitude, and the actual work of the control
force is less than 2N�F0−F0c�s. If the accumulated phase
shift is significant N�0�Ts��c, the actual work of the con-
trol force within the considered N periods is too small to
compensate the dissipation. In this case, the damping of the
oscillation should occur. Substituting expressions for N and
�Ts into the equation N�0�Ts��c, one gets that the critical
value Ec of the oscillation energy is approximately deter-
mined by

�Ec − Es

Es
�2

�
2�c

�

F0 − F0c

FW
=

��c

16

F0 − F0c

QF0c
. �41�

Substituting Eq. �41� into Eq. �40�, the lifetime of the sta-
tionary oscillation is roughly given by

�s � TsQ exp���c

6�

1

	2� F0

F0c
− 1�� . �42�

For F0 /F0c�1, the phase shift �0 between the control
force and the velocity of the movable wall in the stationary
operation mode tends to � /2; therefore, the critical phase
shift �c tends to �. The obtained expression �42� for the
lifetime of the stationary operation mode is in qualitative
agreement with the calculated dependence of the lifetime on
the control force amplitude �see Fig. 10�.

On the basis of Eq. �42� and Fig. 10, let us analyze the
possibility to increase the lifetime of the stationary operation
mode �s of the oscillator at a given oscillation amplitude and
frequency using the external control parameters. In accor-
dance with Eq. �42� and Fig. 10, the lifetime of the stationary
operation mode �s exponentially depends on the amplitude of
the control force F0 and, therefore, can be increased signifi-
cantly by increasing the amplitude of the control force F0. In
the case where the fluctuation-dissipation theorem is valid
and at the given oscillation amplitude and frequency, 	 de-
pends only on temperature 
see Eq. �21��. However, due to
the Q-factor being almost inversely proportional to tempera-
ture �see Table I�, 	 can only slightly be changed with tem-
perature. As a result, the lifetime of the stationary operation
mode �s also weakly depends on temperature.

The critical value �c of frequency corresponding to the
critical value Ec of the oscillation energy is determined by
the relation

�c − �

�
=

��c

�
=

Es − Ec

2Es
, �43�

where �=� / �2�� is the frequency of the control force. From
Eqs. �41� and �42� it follows that ��c /�� �F0 /F0c�1/2 for
F0 /F0c�1. Such a dependence of the critical frequency on
the control force amplitude correlates with the square-
rootlike dependence for the lower limit of the ratio � /�0 on
F0 /F0c presented in Figs. 6�a� and 6�b�. This is because, in
the both cases, we consider the maximum relative difference
between the oscillation frequency and the frequency of the
control force for which the oscillation is still sustained. Note
that estimates of the oscillator stability regions similar to
Eqs. �41� and �43� should be valid for any anharmonic oscil-
lator with a strong dependence of the oscillation period on
the oscillation energy dTs /dE�Ts /E. Therefore, the lifetime
of the stationary operation mode should be finite for any
strongly anharmonic oscillator.

Up to now atomistic simulation of nanotube-based oscil-
lators was restricted to sizes of hundreds of nanometers and
simulation times of tens of nanoseconds.23–37,39 The proposed
phenomenological model taking into account thermodynamic
fluctuations makes it possible to extend the simulation time
up to 1 ms. Let us discuss the possibility to use this model
not only for long simulation times but also for sizes of the
oscillator greater than 3 nm.

The proposed model based on motion equation �11� has
no size restrictions and can be applied to any size of the
oscillator in the case if: �1� there are no resonances between
the telescopic oscillation and other vibrational modes of the
system and �2� the phenomenological parameters for the ran-

0.0 0.5 1.0 1.510-5

10-3

10-1

f

E /Es

FIG. 12. �Color online� Energy distribution functions f�E /Es�
for the controlled oscillations at �=�0 and �=0. Solid lines show
the results of the numerical calculations in the long nanotube case
with ��=1 fs: ��� 	=2.0, Q=55, and F0 /F0c=4; ��� 	=2.0, Q
=55, and F0 /F0c=8; ��� 	=1.5, Q=55, and F0 /F0c=4; and ���
	=2.0, Q=500, and F0 /F0c=4. Corresponding functions calculated
using Eq. �39� are shown with the dotted lines.
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dom noise force and friction force are available. Let us ana-
lyze the restrictions imposed on the nanotube length by con-
dition �1�. Among the low-frequency nanotube vibrational
modes, there are long-wave acoustic vibrational modes,57–60

squash modes,61 and relative vibrational modes of the
walls.62,63 According to our previous calculations,24 for the
�5,5�@�10,10� nanotube of 3-nm length, the fundamental fre-
quency of the doubly degenerate transverse acoustic modes
is 1.5 THz, the fundamental frequency of the squash mode is
about 1 THz and the frequencies of the nonaxial translational
relative vibrations of the inner wall inside the outer wall are
0.25–0.33 THz. For this nanotube, there is no resonance be-
tween the telescopic oscillation and any other nanotube vi-
brational modes. With increasing the nanotube length, the
fundamental frequencies of the longitudinal and torsional
acoustic modes decrease as �1 /L �Refs. 57, 58, and 60�
�where L is the nanotube length� while the frequencies of the
relative vibrations of the nanotube walls and of the squash
modes weakly depend on the nanotube length. Since the fre-
quency of the telescopic oscillation is inversely proportional
to the nanotube length 
see Eq. �14� for the case s�L�, these
modes do not become resonant with the telescopic oscilla-
tion. However, from the Euler-Bernoulli beam theory64 it fol-
lows that the fundamental frequency of the transverse acous-
tic �flexural� vibrational modes57 should decrease with
increasing the nanotube length faster than the frequency of
the telescopic oscillation

f tr
0 =

22.4

2�L2� YI

�A
, �44�

where Y �1 TPa is the nanotube Young’s modulus,65–67 �
�2.2�103 kg /m3 is the density of carbon atoms, I��R4 is
the nanotube areal moment of inertia, A��R2 is the nano-
tube cross-sectional area and R is the outer wall radius. From
the equality of the fundamental frequency of the transverse
acoustic modes 
see Eq. �44�� and the frequency of the tele-
scopic oscillation 
see Eq. �14� for the case s=L /3�, the
nanotube length at which the resonance between these modes
is possible can be estimated as

Lmax

R
� 10.3R� Y

FW
� 200. �45�

So for the �5,5�@�10,10� nanotube, the maximum length up
to which the one-dimensional model is applicable is about
Lmax�140 nm. For longer nanotubes, coupling of the tele-
scopic oscillation with the transverse acoustic modes should
be taken into account.

In the present paper we only considered the case when
there is no resonance between the telescopic oscillation and
other nanotube vibrational modes. As it was shown by MD
simulations,24 in the case of the resonance, not only the
Q-factor of the oscillator decreases drastically but the level
of thermodynamic fluctuations is also a few times greater
than that under the conditions when the fluctuation-
dissipation relation is satisfied 
see Eq. �7��. Therefore, ac-
cording to Eq. �42�, the lifetime of the stationary operation
mode in the case of the resonance should be significantly
smaller compared to that for the case when the resonance is

absent. So the operation of the oscillator in the case when
there is a resonance with any nanotube vibrational mode
should be avoided.

As for condition �2�, the phenomenological parameters for
the short nanotube of 3-nm length considered above were
extracted from the MD simulations and validity of the model
was based on matching to the MD results. For longer nano-
tubes, the phenomenological parameters of the model can be
determined accurately on the basis of experimental measure-
ments. Note that as the fluctuation-dissipation theorem,
which relates the thermal noise to the energy dissipation rate,
is valid for these nanotubes, it is sufficient to measure only
the Q-factor of the oscillator.

On the basis of the obtained results, let us discuss the
restrictions imposed by thermodynamic fluctuations on sizes
of the nanotube-based NEMS for which control over the
NEMS operation is possible. From Eq. �42� and Fig. 10, it is
seen that the lifetime of the stationary operation mode �s can
be increased by decreasing the level of fluctuations 	. Ac-
cording to Eq. �21�, 	 is proportional to the square root of the
Q-factor divided by the oscillation energy. Therefore, a de-
crease in 	 can be achieved by an increase of the oscillation
amplitude. However, for the oscillation amplitude greater
than about 30% of the inner wall length, the dissipation rate
strongly increases �and, consequently, the Q-factor strongly
decreases� with an increase in the oscillation amplitude due
to the excitation of low-frequency vibrational modes.26,35

Thus, for an oscillator with a certain length the minimum
level of fluctuations 	 and, therefore, the maximum lifetime
of the stationary operation mode �s correspond to some op-
timal oscillation amplitude about 30% of the oscillator
length. From the MD simulations24 it follows that if the ratio
of the initial telescopic extension of the inner wall to the
oscillator length is maintained, the Q-factor is independent of
the oscillator length 
in the region L�Lmax, see Eq. �45��. In
the same case, the oscillation energy is proportional to the
oscillator length. Hence, one gets the minimum value of 	
for oscillators with the optimal oscillation amplitude to be
inversely proportional to the square root of the oscillator
length. In accordance with Eq. �42�, this means that the life-
time of the stationary operation mode �s for such oscillators
increases exponentially with increasing their length. For ex-
ample, based on the data of Table I for the 3.1 nm
�5,5�@�10,10� nanotube-based oscillator, one can estimate
that, for the oscillator longer than 35 nm, 	 should be below
0.4. For F0 /F0c=2, the lifetime of the stationary operation
mode would already exceed 1 s. Thus, by the example of the
gigahertz oscillator, we demonstrated that thermodynamic
fluctuations can impose crucial restrictions on sizes of
NEMS for which control of the NEMS operation is possible.

V. CONCLUSION

In summary, we performed MD simulations of the con-
trolled operation of the nanotube-based gigahertz oscillator.
The feasibility of control over a movable nanotube wall
which is functionalized so that it has an electric dipole mo-
ment by a nonuniform electric field was demonstrated. The
MD simulations were used to obtain the oscillator Q-factor
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and the characteristics of the thermal noise. To study the
possibility of the stationary operation mode �operation mode
with a constant frequency� at a simulation time of 1 ms, a
phenomenological one-dimensional model with the param-
eters derived from MD simulations was proposed. Using this
model, the control force parameters �amplitude F0, angular
frequency �, and initial phase shift � between the control
force and the velocity of the movable wall� at which the
stationary operation mode is possible were determined. In
particular, it was shown that the ranges of � and � which
correspond to the stationary operation mode become wider
with increasing the amplitude of the control force.

Significant thermodynamic fluctuations in the nanotube-
based gigahertz oscillator were observed by the MD simula-
tions of damping oscillations. The multiscale simulations
�both MD simulations and simulations with the phenomeno-
logical model� revealed that the fluctuations cause the break-
down of the stationary operation mode. The average lifetime

of the stationary operation mode was found to decrease with
increasing the level of fluctuations or decreasing the ampli-
tude of the control force. These dependences were explained
through the analysis of the oscillation energy distribution
function calculated on the basis of the Fokker-Planck equa-
tion. The investigations performed showed that the thermo-
dynamic fluctuations impose restrictions on the sizes of
NEMS for which the control of the NEMS operation is fea-
sible.
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